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Abstract—Information theory has been used for quite some time in the area of computational biology. In this paper we present a

pattern discovery method, named Fast Entropic Profiler, that is based on a local entropy function that captures the importance of a

region with respect to the whole genome. The local entropy function has been introduced by Vinga and Almeida in [29], here we discuss

and improve the original formulation. We provide a linear time and linear space algorithm called Fast Entropic Profiler (FastEP ), as

opposed to the original quadratic implementation. Moreover we propose an alternative normalization that can be also efficiently

implemented. We show that FastEP is suitable for large genomes and for the discovery of patterns with unbounded length. FastEP is

available at http://www.dei.unipd.it/~ciompin/main/FastEP.html.
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Ç

1 INTRODUCTION

INFORMATION theory [25] has been applied to many fields
including DNA sequence analysis [30]. Methods of infor-

mation theory focusing on DNA sequence compression
have found differences between coding and non-coding
sequences [21] and they have been used also for classifica-
tion [4], [5]. In [15] the authors applied the mutual informa-
tion to discover SNPs that are significantly associated with
diseases. Also compression based classification relying on
mutual information can be useful for reconstructing phylo-
genetic trees [3]. Moreover the identification of splicing
mutations can benefit from the use of Information Theory
[23]. In [14] sequence motifs are modeled based on the maxi-
mum entropy principle. Such models can be utilized to dis-
criminate between signals and decoys. In [6] an entropic
segmentation method is discussed to detect borders
between coding and noncoding DNA. These are just a few
examples of the computational biology applications
inspired by information theory.

The increasing availability of biological sequences, from
proteins to entire genomes, poses the need for the automatic
analysis and classification of such a huge collection of data.
Alignment methods and pattern discovery techniques have
been used, for quite some time, to attach various problems
emerging in the field of computational biology.

The number of completely sequenced genomes stored in
the Genome Online Database has already reached the
impressive number of 2,968. The GenBank database con-
tains more than 100 Giga base pairs (Gbp) (as of 2012) and it
is a general belief that its size will double every six months

[33]. The size of the entire Human genome is in the order of
3 billion DNA base pairs, whereas other genomes can be
long as 16 Gbp. In this scenario one of the most important
needs is the design of efficient techniques to store and ana-
lyze biological data. For example, the comparison of com-
plete genomes to infer mobile elements is possible only
with sophisticated hashing techniques [22].

In this paper we discuss and improve the function
Entropic Profiler, introduced by Vinga and Almeida in
[13], [29]. The concept of Entropic Profiler was introduced
to analyze DNA sequences. The Entropic Profiler is a func-
tion of the genomic location that captures the importance
of that region with respect to the whole genome. This score
is based on the Shannon entropies of the words distribu-
tion. This method proved useful for the identification of
conserved genomic regions.

Other types of sequence profile have also been previously
explored like Sequence Logos [24], that provide the informa-
tion content per position. This method, however, requires
the alignment of a set of sequences and thus it is not suited
for a single sequence. Similarly another type of sequence pro-
file has been proposed based on linguistic complexity [27]
and low entropy DNA zones [12]. Moreover this approach
does not comply to the alignment-free paradigm like [9].

Most of the alignment-free methods characterize
genomes based on their subsequence composition. This par-
adigm closely resembles some of the information theory
problems, and is tightly related with the compression of
strings. In fact, compositional methods can be viewed as the
reinterpretation of data compression methods, well known
in the literature [3]. While analyzing massive genomes, the
number of repeated patterns is very high, particularly in
the non-genic regions. Furthermore if we allow mismatches
the number of patterns can grow exponentially [2].

One of the most important requirements is the devel-
opment of efficient methods for the analysis of whole
genomes that can scale gracefully with the size of input.
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In this paper we study the use of suffix tree for the com-
putation of the Entropic Profiler. We show that the same
function can be evaluated in linear time and space as
opposed to the quadratic implementation of the original
Entropic Profiler [29]. This will allow the use of longer
genomes and the discovery of motifs with unbounded
length, removing the limitations of the current implemen-
tation. Moreover we propose an alternative normalization
that can be also efficiently implemented within the suffix
tree structure. The resulting implementation will be
named Fast Entropic Profiler (FastEP ).1 We show that
FastEP proved useful for the detection of conserved sig-
nals and that it is more efficient than the original imple-
mentation allowing the use of longer genomes and the
search for longer patterns.

The rest of the paper is organized as follows. In the next
sections we introduce the original Entropic Profiler and
some preliminaries on suffix trees. We discuss our imple-
mentation called Fast Entropic Profiler in Section 2 and an
alternative normalization in Section 3. Some experiments
are discussed in Section 4 and the conclusions are reported
in Section 5.

1.1 Entropic Profiler

Although DNA is a flexible three-dimensional molecule
interacting in a dynamic environment, its digital informa-
tion can be represented by a one dimensional character
string of G’s, A’s, T’s and C’s. Following this standard
assumption, two of its most striking features are the extent
to which repeated L-tuples occur and the variety of
repeated structures it contains. These topics have been dis-
cussed extensively and various mechanisms try to explain
the functional and evolutionary role of repeats. The degree
of predictability and randomness of a substring is described
by its entropy [29]. Entropic Profiles (EP) are plots estimated
by this local entropy formulation, defined for each position/
symbol, from the complete sequence of DNA. The original
definition is based on the distribution of words that end at a
particular location i. The function local entropy for position
i is defined as:

gL;fðiÞ ¼ 1þ 1=n
PL

k¼1 4
kfkc½i� kþ 1; i�PL

k¼0 f
k

; (1)

where f is a normalization parameter. Let s be the input
genome of length jsj ¼ n, we define s½i; iþ k� 1� as the
word of length k that starts at position i. Let c½i; iþ k� 1�
be the number of time the word s½i; iþ k� 1� appears in
the genome s. This function can be interpreted as a linear
combination of suffix counts up to a given length L, with
different weights. It computes, for each location of the
sequence, the information about the abundance of the cor-
responding L-tuple suffix inside the entire sequence. For
ease of explanation we redefine the above formula to eval-
uate the statistic of words starting at position i, instead of
ending at position i.

fL;fðiÞ ¼ 1þ 1=n
PL

k¼1 4
kfkc½i; iþ k� 1�PL

k¼0 f
k

: (2)

Note that the function gL;fðiÞ is equivalent to compute
fL;fðn� iÞ for the reverse of s. This function is then normal-
ized to allow the comparison of different parameter combi-
nations. EP values are normalized as a z-score:

EPL;fðiÞ ¼ fL;fðiÞ �mL;f

sL;f
;

where the mean is

mL;f ¼ 1

n

Xn
i¼1

fL;fðiÞ

and the standard deviation

sL;f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

fL;fðiÞ �mL;f

� �2
:

s

We will discuss an alternative normalization in Sec-
tion 3. The EP function has been used to detect candi-
date regions of interest in genomes. An example of
genome analysis is reported in Fig. 1. This plot illustrates
that at position 35840 in the genome of E. Coli a highly
rated motif of length 8 can be found (5’-GCTGGTGG-3’),
which corresponds to a Chi site (crossover hotspot insti-
gator). These sequences are statistically well-conserved,
over-represented and therefore easily detected: a) and b)
show the influence of the parameters at position 35840;
c) and d) show the Entropic Profiler whose peaks belong
to a Chi sequence motif.

The original implementation of the entropic profiler is
based on a truncated suffix trie, see Fig. 2. A standard trie,
storing the collection of n suffixes of the entire DNA
sequence, has the following properties:

� the number of nodes is Oðn2Þ.
� the height is equal to the length of the longest string,

that is the length of the whole sequence, n.

� word matching for a pattern of length L takes OðLÞ
time.

� constructing the entire trie takes Oðn2Þ time.
The counters at each node represent the number of

occurrences of the corresponding word. This allows the
main EP function to be worked out by simply string match-
ing. All nodes at the same depth are connected by side
links in order to speed up the normalization, otherwise the
computation of mL;f and sL;f would involve the repeated
calculation of the main EP function for all positions.

There are two problems with this implementation. The
first issue is that it is space inefficient. Specifically, there
may be a lot of nodes that have only one child, and the
existence of such nodes is a waste of space. The second
issue is that the entropic profiler can be computed only
for small L. In fact in [29] the function EP can be
explored only for motifs shorter than 15 bases, and thus
the trie is truncated at depth 15. These observations have

1. A preliminary version of this paper has been presented at PRIB
2013 [1].

COMIN AND ANTONELLO: FAST ENTROPIC PROFILER: AN INFORMATION THEORETIC APPROACH FOR THE DISCOVERY OF PATTERNS... 501



prompted the idea to consider instead of a trie its com-
pressed version also known as suffix tree.

A suffix tree ensures that each internal node in the trie
has at least two children. It enforces this rule by compress-
ing chains of single-child nodes into individual edges. As a
consequence, the number of nodes of the compressed trie is
proportional to the number of suffixes, n, and not to their
total length, nðnþ1Þ

2 .

1.2 Preliminaries on Suffix Trees

Suffix tree is one of the most studied data structures and it is
fundamental for string processing. It stores a string in such
a way that enables the implementation of efficient searches.
Traditionally the suffix tree has been used in very different
fields, spanning from data compression [4], [32] to cluster-
ing [11] and classification [9], [10]. The use of suffix tree has
become very popular in the field of bioinformatics allowing
a number of string operations, like detection of repeats [17],
local alignment [20], the discovery of regulatory elements
[7], [8] and extensible patterns [2]. The optimal construction
of suffix tree has already been addressed by [19], [28], that
provided algorithms in linear time and space.

The suffix tree of a string s is a tree that stores all the suf-
fixes of s. In a suffix tree all paths going from the root node
to the leaf nodes spell a suffix of s. The terminal character $
is unique and ensures that no suffix is a proper prefix of any
other suffix. Therefore, the number of leafs is exactly the
number of suffixes.

All edges spell non-empty strings and all internal nodes,
except the root node, have at least two children. Moreover

Fig. 1. Entropic profiler of E. coli for various choice of the parameters L (a) and f (b) and for various positions (c) and (d).

Fig. 2. Truncated suffix tree, L ¼ 3, and side links of the string ATTA-
CAC as implemented in the original entropic profiler.
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there are at most n� 1 internal nodes in the tree. This
ensures that the total number of nodes in the suffix tree is
linear in the length n. Hence, the maximum number of
nodes and edges are linear in n.

Fig. 3 shows an example of a suffix tree of the string
s ¼ TCGGCGGCAAC. We can observe that each suffix of
the string s is present in the tree as a labeled path from the
root to a leaf.

If every edge is labeled with the characters from S to
store the suffix tree we need Oðn2Þ space. This can not be
suitable for large sequences such as whole genomes. To
address this issue the suffix tree is usually compressed.
Since every edge represents a substring of s, instead of
using a variable number of characters from S we can store
the starting and ending positions of the substring. This will
require only two integers per edge. Thus the total space
required to store the compressed suffix tree is OðnÞ.

2 FAST ENTROPIC PROFILER

In this section we describe how the Entropic Profiler can be
efficiently computed using the suffix tree. Let us assume
that we have already computed the suffix tree of the input
string s using Ukkonen’s algorithm [28]. We extend this
structure so that every node v contains two variables: cðvÞ,
that stores the number of times that the word represented
by v appears in s, and entropyðvÞ, that will be used next to
speed up the computation of the Entropic Profiler values.

If c½v� stands for the number of times the word repre-
sented by v occurs, for each internal node we can write:

c½v� ¼
X

all childw of v

c½w�;

where c½w� ¼ 1 if w is a leaf. That is right only if the charac-

ter $ in the end of the string is considered. This formula

allows us to compute the number of occurrences of the

word represented by the node v using its children. With a

simple OðnÞ traversal of the tree we can compute the vari-

able cðvÞ of each internal node v.

The goal is to find an efficient way to compute the main
EP function 2 for every possible substring and parameter
combination. Since the substring taken into consideration,
s½i; iþ L� 1�, is encoded by the suffix tree, there are two
main cases: it may be spelled out by the concatenation of
the edge-labels on the path from the root to a node or not. In
the latter case the substring ends between two nodes.

The function fL;fðiÞ for each substring belonging to the
former case can be preprocessed and stored in a variable
entropyðvÞ, for each node v. Now assume that the node v
represents the substring s½i; iþ L� 1� then the variable

entropyðvÞ will contain
PL

k¼1 4
kfkc½i; iþ k� 1�, the main

sum of fL;fðiÞ. Note that once entropyðvÞ is available we can
calculate fL;fðiÞ in constant time. The following preprocess-
ing is a preorder traversal of the tree that computes the
value of entropyðvÞ for all nodes. Let parðvÞ be the parent
node of v, and hðvÞ the length of the string spelled out by
the concatenation of the node-labels on the path from the
root to that node. In other words hðvÞ is the length of the
string represented by the node v.

Let’s consider the string TCGGCGGCAAC and the suffix
tree in Fig. 3. The main sum for the function f4;fð2Þ isP4

k¼1 4
kfkc½2; 2þ k� 1�. For ease of explanation we write

c½s½i; j�� instead of c½i; j�. This sum can be expanded as:

4fc½C� þ ð4fÞ2c½CG� þ ð4fÞ3c½CGG� þ ð4fÞ4c½CGGC�:
Now the information contained in the suffix tree allows us to

simplify this sum. We can note that every time we see CG it is

always followed by a GC, thus cðCGÞ ¼ cðCGGÞ ¼ cðCGGCÞ,
that is also cðvÞ, where v represents the word CGGC. Finally if

we consider that entropyðCÞ ¼ 4fc½C�, that corresponds to

entropyðparðvÞÞ. Thus the previous sum can be simplified in:

4fc½C� þ ½ð4fÞ2 þ ð4fÞ3 þ ð4fÞ4�c½CGGC�

¼ entropyðparðCGGCÞÞ þ cðCGGCÞ
X4
2

½4kfk�:

This is equivalent to the formula used in the preprocessing,

where part of the summation of cð:Þ is simplified thanks to

the suffix tree. Using the properties of the geometric series

we can observe that
PhðvÞ

k¼hðparðvÞÞþ1 ½4kfk� is equivalent to

Fig. 3. Suffix tree of the string TCGGCGGCAAC. Every copy of the ter-
minal symbol $ is removed from the edge labels. The nodes are labeled
with the corresponding values of entropyjcount, where for simplicity
4f ¼ 1.
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½ð4fÞhðparðvÞÞþ1 � ð4fÞhðvÞþ1�=½1� 4f�. This allows us to use

the recurrence in the above preprocessing, that can be com-

puted in constant time. Thus each visit takes time Oð1Þ,
and the total time spent in this preprocessing is OðnÞ, lin-
ear in the number of nodes.

After this preprocessing, the value of entropyðvÞ, and
consequently the EP function, can be retrieved efficiently
for all words represented by some node in the tree T .
Remember that not all words for which we want to compute
the function EP are represented by some node in the tree. To
accommodate this issue the following algorithm computes
the EP function of any word s½i; iþ L� 1� of length L using
as input the suffix tree T .

In summary if the query word is represented in the suffix
tree by a node u it is enough to return entropyðuÞ, otherwise
we need to add a correction factor that is proportional to the
number of times the word as a whole appears, and thus
using cðvÞ. The correctness of this procedure follows from
the same observations of the previous section and it is in
fact a truncation of the above recurrence. Again from the
output of this procedure we can compute in constant time
the Entropic Profiler function (formula 2). Thus after a linear
time linear space preprocessing we can evaluate FastEP for
a certain position or equivalently a specific pattern in con-
stant time. The original implementation requires Oðn2Þ time
and space to answer the same query.

3 FAST ENTROPIC PROFILER NORMALIZATION

The aim of this section is to provide an alternative normali-
zation of EP such that, its computation does not require to
process all positions of s and for each L. Algebraic consider-
ations [29] allow the meanmL;f to be rewritten as:

mL;f ¼ ðf� 1Þðn2 þPL
i¼1 C

2½k�Þ
n2ðfLþ1 � 1Þ ; (3)

where C2½k� stands for the sum of the squared counts of all dis-

tinct words of size k in the whole sequence. Similarly, the stan-

dard deviation sL;f becomes:

sL;f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

S½L�
fLþ1�1
f�1

� �2 �m2
L;f � n

0
B@

1
CA

vuuuut ; (4)

where the recursive function S½L�, that depends on the num-
ber of distinct word of length L, is fairly intricate. Even if the
number of L-tuples is less than the length of the whole
sequence n, this kind of normalization takes still Oðn3Þ time
and Oðn2Þ space. In addition the suffix tree of the new entro-
pic profiler do not provide side links which allow to retrieve
the variables c for all words of length L.

There are several alternatives to the above normalization.
In this paper we propose to define FastEPL;fðiÞ as :

FastEPL;fðiÞ ¼ fL;fðiÞ
max0�j<n½fL;fðjÞ� ; (5)

where the function max0�j<n½fL;fðjÞ� returns the maximum

value of fL;f over all words of size L. Similarly to the original

normalization this formulation allows to compare the entropic

profiler scores for words of different length. In fact FastEP
assumes values in the range ½0; 1�.

3.1 Finding the Maximum Entropy fffL;f for All LLL
Using a Branch and Bound Approach

In the following we discuss a branch and bound strategy to
efficiently recover the values ofmax0�j<n½fL;fðjÞ�, or simply
maxL, for each L. Instead of naively comparing each word
of length L, or scanning all positions in the input sequence
s, we can search for the maximum FastEP using the aug-
mented suffix tree built in the previous section. In particular
the search for the maximum FastEP can be restricted to
some regions of the tree. Again for ease of explanation we
will consider only the sum

PL
k¼1 4

kfkc½i; iþ k� 1�, as the
main function fL;fðjÞ can be trivially derived.

In the following we describe how to efficiently search for
this maximum traversing only some branches of the tree
while pruning some others. If L ¼ 1, the maximum fL;fðjÞ is
the number of times the most frequent character occurs
times 4f and it can be established by a simple comparison.
This trivial example shows that not all nodes need to be tra-
versed to locate the maximum for a certain L, only the most
promising paths.

If L > 1, two definitions are needed to select which sub-
trees must be taken into consideration and which can be
pruned.

Definition 1. The minimum potential maximummpmL, for each
L, is defined as:

mpmL ¼ maxL�1 þ 4LfL:

Knowing the maximum maxL�1, if it is does not come
from a leaf, it can always be incremented by following that
path. More precisely it can be incremented of at least 4LfL,
that is the case of a leaf with just one occurrence. Thus
mpmL is the lower bound formaxL.

Definition 2. The maximum potential maximum MPMLðvÞ,
where L > 1 and v is a node such that hðvÞ < L, is defined as:

MPMLðvÞ ¼ entropyðvÞ þ ½cðvÞ � 1� �
XL

k¼hðvÞþ1

4kfk:
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The maximum potential maximum MPMLðvÞ is associ-
ated to any node v. At each step they define an upper bound
to the maximum FastEP obtainable for a path starting from
the root and passing through the node v. Since the node v
will have at least two children, the most occurring child will
have at most cðvÞ � 1 occurrences, and thus the best way to
maximize maxL will be by following that path. This will
increment the current entropy, entropyðvÞ, by ½cðvÞ � 1��PL

k¼hðvÞþ1 4
kfk, and this will be the highest obtainable value

for a path passing through v.
We can use these two definitions to prune the search

space. If a MPMLðvÞ is less than mpmL then the subtree
rooted at v can be discarded and not considered. Otherwise
if MPMLðvÞ is greater than mpmL we extend the search to
the children of v as long as these nodes have height not
greater than L. The maximum potential maximums, MPM
bounds, are progressively computed and they allow to
prune the search space for the maximum FastEP .

The following numerical example, which computes the
values of maxL for L from 1 to 3, clarifies these concepts.
Let’s consider the example of Fig. 3 where for simplicity we
use 4f ¼ 1. For L ¼ 1 it is enough to consider the most fre-
quent character, that is G or C, that produces max1 ¼
entropyðCÞ ¼ 4. If L ¼ 2 it must be max2 � max1 þ 1 ¼ 5,
where the second term is the minimum potential maximum
mpm2 ¼ 4þ 1 ¼ 5. Now for L ¼ 2we have that:

A:MPM2ðAÞ ¼ 2þ 1 ¼ 3 < mpm2 ¼ 5 !NOTacceptable
path;

C:MPM2ðCÞ ¼ 4þ 3 ¼ 7 > mpm2 ¼ 5 ! acceptable path;
G:MPM2ðGÞ ¼ 4þ 3 ¼ 7 > mpm2 ¼ 5 ! acceptable path;
T:MPM2ðT Þ ¼ 1þ 1 ¼ 2 < mpm2 ¼ 5 ! NOT acceptable

path;
Two nodes are left out because a priori the maximum for

L ¼ 2 cannot be found traversing those nodes of the tree.
Thus, after following every acceptable path, the value max2
is obtained by comparison:

CA: entropyðCAÞ ¼ 4þ 1 ¼ 5
CG: entropyðCGÞ ¼ 4þ 2 ¼ 6
GC: entropyðGCÞ ¼ 4þ 2 ¼ 6
GG: entropyðGGÞ ¼ 4þ 2 ¼ 6 ! max2 ¼ 6:
Note that at this step no more nodes are traversed, but

since hðvÞ7 < L we just take the path with the maximum
value of c.

For L ¼ 3 it must be max3 � max2 þ 1 ¼ 7 ¼ mpm3. The
procedure is analogous but one more step is needed.

A:MPM3ðAÞ ¼ 2þ 2 � 1 ¼ 4 < mpm3 ¼ 7 ! NOT accept-
able path;

C: MPM3ðCÞ ¼ 4þ 2 � 3 ¼ 10 > mpm3 ¼ 7 ! acceptable
path;

G: MPM3ðGÞ ¼ 4þ 2 � 3 ¼ 10 > mpm3 ¼ 7 ! acceptable
path;

T:MPM3ðT Þ ¼ 3 < mpm3 ¼ 7 ! NOT acceptable path.
Some nodes are then further traversed, G� > GGC and

G� > GC:

CGG: MPM3ðGGCÞ ¼ entropyðGGCÞ ¼ 8 > mpm3 ¼ 7 !
acceptable path;

GC: MPM3ðGCÞ ¼ 6þ 1 ¼ 7 ¼ mpm3 ¼ 7 ! NOT accept-
able path.

It is worthwhile noting that the path of edge-labels
beginning with string GC can be excluded because
MPM3ðGCÞ ¼ mpm3. In fact the max3 will be equal to
mpm3 if and only if there are not any other acceptable
paths. Thus we can discard the node corresponding to
the prefix GC. The value max3 is finally obtained by
comparison:

CGG: entropyðCGGÞ ¼ 4þ 2 � 2 ¼ 8
CAA: entropyðCAAÞ ¼ 4þ 2 � 1 ¼ 6
GCC: entropyðGGCÞ ¼ 8 ! max3 ¼ 8:
In summary we can observe that to obtain maxL,

maxL�1 is required, thus overall maxL can be computed
in L steps. If L ¼ n in the worst case we can traverse the
entire suffix tree, that is OðnÞ nodes. Thus overall the n
values of maxL can be computed in Oðn2Þ time and OðnÞ
space. There are some tricks that one can use in the
implementation to speedup further this process. We can
note that if a node is part of an acceptable path while
calculating maxL it will be also traversed for maxLþ1.
Thus we don’t need to traverse that part of the tree from
the root, but we can just start from the latest nodes vis-
ited for maxL. Another observation is that the value of
mpmL should be reset if the previous maximum ends in
a leaf. For comparison with the original approach, based
on truncated tries, the normalization process can take
Oðn3Þ time and Oðn2Þ space, whereas our branch and
bound strategy requires Oðn2Þ time and linear space.

3.2 Average Entropy

It is possible to estimate the average values of the func-
tion fL;fðjÞ, denoted by E½fL;fðjÞ�. Suppose that the
sequence s is generated by a stationary, i.i.d. source
which emits every symbol with the probability, e.g.,
pA ¼ pC ¼ pG ¼ pT ¼ 1=4. For sake of simplicity we will
consider this simplistic assumption, however the follow-
ing results can be easily adapted to different probabilis-
tic settings, like non uniform probabilities and also to
the case of Markov model. The probability that a k-mer
wk appears at position i is pwk

ðiÞ ¼ ð1=4Þk. If the number
of occurrences of wk is much smaller than the length of
s, then all occurrences can be considered independent,
thus discarding the autocorrelation (cf. [31, chapter 12]).
In this context, the number of occurrences will follow a
binomial distribution and, as a consequence, pwk

ðiÞ does
not depend on the position i. The average number of
occurrences for a k-mer wk, when n >> cðwkÞ, is:

E½cðwkÞ� ¼ pwk
ðn� kþ 1Þ ¼ n� kþ 1

4k
	 n

4k
:

Then, we can compute the average of the main summation,

E
XL
k¼1

4kfkc½i; iþ k� 1�
" #

¼
XL
k¼1

4kfkE½c½i; iþ k� 1��

¼
XL
k¼1

4kfk n

4k
¼ n

XL
k¼1

fk
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and average of fL;fðjÞ:

E½fL;fðjÞ� ¼
1þ 1

n

PL
k¼1 f

knPL
k¼0 f

k
¼ 1þPL

k¼1 f
kPL

k¼0 f
k

¼ 1:

Other statistical properties of fL;fðjÞ can be proved,
but this can be out of scope here. Even if the average
entropy is 1 in the next section we will see that locally
this function varies with the positions.

4 RESULTS

The applicability of the EntropicProfiler for the detection of
conservation in genomes has already been addressed in

[13], [29]. Here we devise some tests to experimentally vali-
date that FastEP can find the same signals of the original
EntropicProfiler, but with an improved efficiency.

4.1 Finding Conservation in Genomes

FastEP was tested in several DNA sequences, but in this
section we report the results for three genomes.

In the first experiments we use the Escherichia coli
K12 genome. We illustrate an example of study around a
target position. We can select a window length to study a
specific interval of positions. Also the length L can be
chosen and in this case we search for patterns of length
from 6 to 12. Note that after computing the values for

Fig. 4. Example of study of the E-Coli genome starting at position 78440 for various values of L.

Fig. 5. Example of study of the H. Influenza genome starting at position 14165 for various values of L.
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L ¼ 12 all other values for L < 12 can be computed in
constant time. Fig. 4 shows the output results for the
Escherichia coli K12 genome with f ¼ 10, starting posi-
tion 78440 and window length of 100.

The Fig. 4 reports the values of FastEP for all posi-
tions in the range 78440-78540. For each position several
values of FastEP are reported varying the parameter L.
The most important peak is at position 78445 and the
value of L that maximizes this peak is L ¼ 8. This highly
rated motif is in fact GCTGGTGG, which corresponds to
a Chi site, a region that modulates the activity of
RecBCD (an enzyme involved in the chromosomal
repair) [26]. It is important to notice that this pattern can
be discovered just by looking at the histogram, and by
analyzing the values L that maximize the score for this
position, and without a previous knowledge of the
length of the motif under study.

In Fig. 5 a similar results is shown for the H. Influenza
genome. We study the positions from 14165 to 14215 with
f ¼ 10 for various values of L. The most important peak is

obtained at position 14202 for L ¼ 9, that corresponds to the
pattern AAGTGCGGT . This well known pattern represents
an uptake signal sequence (USS+) involved in the horizontal
gene transfer [16].

These signals were also discovered by the original
EntropicProfiler, thus indicating that our alternative nor-
malization does not affect the sensitivity. In the last
experiment we use the Drosophila melanogaster genome
that contains about 140 million bases. The original
EntropicProfiler is not able to process this genome and
the program stops due to memory failure. However the
better memory footprint of FastEP allows us to study
also this genome. In Fig. 6 we report the scores of
FastEP for positions 124860-124890 with f ¼ 10 for vari-
ous values of L. The highest pick is obtained at position
124869 for L ¼ 8. It corresponds to the motif
AACAGGTG a transcription factor which enable a zinc
finger protein essential for dorsal-ventral pattern forma-
tion in the developing embryo [18].

4.2 Expected and Real Efficiency

Here we test the efficiency of FastEP in terms of computing
time. At first we analyzed the improvement introduced by
the normalization, in terms of nodes in the tree that are dis-
carded while computingmaxL.

The expected fraction of nodes in the tree that are pruned
can be computed as the following probability:

P
XL
k¼1

4kfkc½i; iþ k� 1� < mpmL

 !
:

Given that c½i; iþ k� 1� is a Binomialðn; pwk
Þ, for large

values of n it can be approximated as a Normalðnpwk
;

npwk
ð1� pwk

ÞÞ. Also the summation can be approximated
with

Fig. 6. Example of study of the Drosophila melanogaster genome starting at position 124860 for various values of L.

Fig. 7. Number of nodes visited for different values of f while computing
maxL for all possible L for the string TCGGCGGCAAC.
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XL
k¼1

4kfkc½i; iþ k� 1� ! Nðm; s2Þ;

where m ¼PL
k¼1 4

kfknpwk
¼ n

PL
k¼1 f

k and s2 ¼PL
k¼1 4

k

fknpwk
ð1� pwk

Þ ¼ n
PL

k¼1 f
kð1� 1=4kÞ.

In practice the expected efficiency depends on the dis-
tribution of words in the string s, that will determine
mpmL. For example, Fig. 7 reports the number of nodes
visited while computing maxL for all L for the string
TCGGCGGCAAC. We can see that as the length L
increases also the maximum number of nodes to be visited
grows, however the branch and bound search will limit
the search only to a fraction of nodes.

We repeat the same experiment using a random string
of length 100; 000, and average the results over ten runs.
In Fig. 8 we report the percentage of nodes visited over
the maximum number of nodes for each length L. Simi-
larly with the previous figure we can observe that it is
enough to visit only a fraction of nodes to compute maxL.
We can note that, in general, small values of f drastically
prune the tree. This is expected since a small f will
weight more shorter patterns and thus the contribution of
longer patterns can be discarded.

In a second series of experiments we test the time per-
formances of both methods on a common laptop with a
1.5 GHz Centrino and 2 Gb of RAM. We took as input
Human Chromosome 1 and select portions of different
lengths. Table 1 reports the average times over 10 runs for
three genomes of length between 1 kbases and 50 Mbases.
For all runs we use L ¼ 10, f ¼ 10 and a window of 100. It
is worth noting that our method FastEP , after computing
the inner data structure, can be used for multiple queries
on the same genome and it allows to change the parameters
on the fly updating the suffix tree. This is not possible in the
original implementation of EntropicProfiler. In column EP
the time for the original method is reported. For FastEP
three times are illustrated. The construction and query cor-
respond to the column “Single Run”. A new query, e.g., a
new starting position or a shorter L, is represented by the
column “New Query”. If a larger L or a new value of f are
required the inner structure is updated in a time reported in
the last column. On a single run FastEP is always faster

than the original method. If multiple queries are required
the advantage becomes immediately embarrassing. The
small space requirements and the improved performance
will enable the study on large genomes.

Moreover in the original implementation the parameter
L can not be greater than 15, whereas FastEP does not have
limitations and can search for longer patterns.

5 CONCLUSIONS

To summarize we improved the original Entropic Profiler
with a faster and more flexible implementation that can
search for longer patterns in a genome. We proposed a new
normalization that can be efficiently computed within the
inner structure of FastEP . We provided some examples
where FastEP is used for the detection of conserved signals
in a genome. The reduced memory footprint and the
improved performance will allow the analysis of longer
genomes. In the future we plan to study the statistical prop-
erties of FastEP , and extend this measure for the align-
ment-free comparison of genomes. Another interesting
direction of investigation is the use of an alternative back-
ground model, computed from a genome, to detect non-
conserved regions in a second genome, this could be
applied for the discovery of mobile elements [22].
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